辗转相除法 基本解释
求两个正整数的最大公约数的算法。设两数为a、b(b<a),求它们最大公约数(a、b)的步骤如下:用b除a,得a=bq?1+r?1(0≤r?1<b)。若r?1=0,则(a,b)=b;若r?1≠0,则再用r?1除b,得b=r?1q?2+r?2(0≤r?2<r?1)。若r?2=0,则(a,b)=r?1,若r?2≠0,则继续用r?2除r?1,……如此下去,直到能整除为止。其最后一个非零余数即为(a,b)。类似地,求两个多项式的最高公因式也可用此法。
辗转相除法 详细解释
数学上一种求两正整数最大公约数的方法。
网络解释
辗转相除法
辗转相除法, 又名欧几里德算法(Euclidean algorithm),是求最大公约数的一种方法。它的具体做法是:用较小数除较大数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。如果是求两个数的最大公约数,那么最后的除数就是这两个数的最大公约数。
另一种求两数的最大公约数的方法是更相减损法。